Skip to content

prefect.server.models.deployments

Functions for interacting with deployment ORM objects. Intended for internal use by the Prefect REST API.

check_work_queues_for_deployment async

Get work queues that can pick up the specified deployment.

Work queues will pick up a deployment when all of the following are met.

  • The deployment has ALL tags that the work queue has (i.e. the work queue's tags must be a subset of the deployment's tags).
  • The work queue's specified deployment IDs match the deployment's ID, or the work queue does NOT have specified deployment IDs.
  • The work queue's specified flow runners match the deployment's flow runner or the work queue does NOT have a specified flow runner.

Notes on the query:

  • Our database currently allows either "null" and empty lists as null values in filters, so we need to catch both cases with "or".
  • json_contains(A, B) should be interepreted as "True if A contains B".

Returns:

Type Description
List[schemas.core.WorkQueue]

List[db.WorkQueue]: WorkQueues

Source code in prefect/server/models/deployments.py
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
@inject_db
async def check_work_queues_for_deployment(
    db: PrefectDBInterface, session: sa.orm.Session, deployment_id: UUID
) -> List[schemas.core.WorkQueue]:
    """
    Get work queues that can pick up the specified deployment.

    Work queues will pick up a deployment when all of the following are met.

    - The deployment has ALL tags that the work queue has (i.e. the work
    queue's tags must be a subset of the deployment's tags).
    - The work queue's specified deployment IDs match the deployment's ID,
    or the work queue does NOT have specified deployment IDs.
    - The work queue's specified flow runners match the deployment's flow
    runner or the work queue does NOT have a specified flow runner.

    Notes on the query:

    - Our database currently allows either "null" and empty lists as
    null values in filters, so we need to catch both cases with "or".
    - `json_contains(A, B)` should be interepreted as "True if A
    contains B".

    Returns:
        List[db.WorkQueue]: WorkQueues
    """
    deployment = await session.get(db.Deployment, deployment_id)
    if not deployment:
        raise ObjectNotFoundError(f"Deployment with id {deployment_id} not found")

    query = (
        select(db.WorkQueue)
        # work queue tags are a subset of deployment tags
        .filter(
            or_(
                json_contains(deployment.tags, db.WorkQueue.filter["tags"]),
                json_contains([], db.WorkQueue.filter["tags"]),
                json_contains(None, db.WorkQueue.filter["tags"]),
            )
        )
        # deployment_ids is null or contains the deployment's ID
        .filter(
            or_(
                json_contains(
                    db.WorkQueue.filter["deployment_ids"],
                    str(deployment.id),
                ),
                json_contains(None, db.WorkQueue.filter["deployment_ids"]),
                json_contains([], db.WorkQueue.filter["deployment_ids"]),
            )
        )
    )

    result = await session.execute(query)
    return result.scalars().unique().all()

count_deployments async

Count deployments.

Parameters:

Name Type Description Default
session sa.orm.Session

A database session

required
flow_filter schemas.filters.FlowFilter

only count deployments whose flows match these criteria

None
flow_run_filter schemas.filters.FlowRunFilter

only count deployments whose flow runs match these criteria

None
task_run_filter schemas.filters.TaskRunFilter

only count deployments whose task runs match these criteria

None
deployment_filter schemas.filters.DeploymentFilter

only count deployment that match these filters

None
work_pool_filter schemas.filters.WorkPoolFilter

only count deployments that match these work pool filters

None
work_queue_filter schemas.filters.WorkQueueFilter

only count deployments that match these work pool queue filters

None

Returns:

Name Type Description
int int

the number of deployments matching filters

Source code in prefect/server/models/deployments.py
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
@inject_db
async def count_deployments(
    session: sa.orm.Session,
    db: PrefectDBInterface,
    flow_filter: schemas.filters.FlowFilter = None,
    flow_run_filter: schemas.filters.FlowRunFilter = None,
    task_run_filter: schemas.filters.TaskRunFilter = None,
    deployment_filter: schemas.filters.DeploymentFilter = None,
    work_pool_filter: schemas.filters.WorkPoolFilter = None,
    work_queue_filter: schemas.filters.WorkQueueFilter = None,
) -> int:
    """
    Count deployments.

    Args:
        session: A database session
        flow_filter: only count deployments whose flows match these criteria
        flow_run_filter: only count deployments whose flow runs match these criteria
        task_run_filter: only count deployments whose task runs match these criteria
        deployment_filter: only count deployment that match these filters
        work_pool_filter: only count deployments that match these work pool filters
        work_queue_filter: only count deployments that match these work pool queue filters

    Returns:
        int: the number of deployments matching filters
    """

    query = select(sa.func.count(sa.text("*"))).select_from(db.Deployment)

    query = await _apply_deployment_filters(
        query=query,
        flow_filter=flow_filter,
        flow_run_filter=flow_run_filter,
        task_run_filter=task_run_filter,
        deployment_filter=deployment_filter,
        work_pool_filter=work_pool_filter,
        work_queue_filter=work_queue_filter,
        db=db,
    )

    result = await session.execute(query)
    return result.scalar()

create_deployment async

Upserts a deployment.

Parameters:

Name Type Description Default
session sa.orm.Session

a database session

required
deployment schemas.core.Deployment

a deployment model

required

Returns:

Type Description

db.Deployment: the newly-created or updated deployment

Source code in prefect/server/models/deployments.py
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
@inject_db
async def create_deployment(
    session: sa.orm.Session, deployment: schemas.core.Deployment, db: PrefectDBInterface
):
    """Upserts a deployment.

    Args:
        session: a database session
        deployment: a deployment model

    Returns:
        db.Deployment: the newly-created or updated deployment

    """

    # set `updated` manually
    # known limitation of `on_conflict_do_update`, will not use `Column.onupdate`
    # https://docs.sqlalchemy.org/en/14/dialects/sqlite.html#the-set-clause
    deployment.updated = pendulum.now("UTC")

    insert_values = deployment.dict(shallow=True, exclude_unset=True)

    insert_stmt = (
        (await db.insert(db.Deployment))
        .values(**insert_values)
        .on_conflict_do_update(
            index_elements=db.deployment_unique_upsert_columns,
            set_={
                **deployment.dict(
                    shallow=True,
                    exclude_unset=True,
                    exclude={"id", "created", "created_by"},
                ),
            },
        )
    )

    await session.execute(insert_stmt)

    query = (
        sa.select(db.Deployment)
        .where(
            sa.and_(
                db.Deployment.flow_id == deployment.flow_id,
                db.Deployment.name == deployment.name,
            )
        )
        .execution_options(populate_existing=True)
    )
    result = await session.execute(query)
    model = result.scalar()

    if model.work_queue_name:
        await models.work_queues._ensure_work_queue_exists(
            session=session, name=model.work_queue_name, db=db
        )

    # because this could upsert a different schedule, delete any runs from the old
    # deployment
    await _delete_scheduled_runs(
        session=session, deployment_id=model.id, db=db, auto_scheduled_only=True
    )

    return model

delete_deployment async

Delete a deployment by id.

Parameters:

Name Type Description Default
session sa.orm.Session

A database session

required
deployment_id UUID

a deployment id

required

Returns:

Name Type Description
bool bool

whether or not the deployment was deleted

Source code in prefect/server/models/deployments.py
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
@inject_db
async def delete_deployment(
    session: sa.orm.Session, deployment_id: UUID, db: PrefectDBInterface
) -> bool:
    """
    Delete a deployment by id.

    Args:
        session: A database session
        deployment_id: a deployment id

    Returns:
        bool: whether or not the deployment was deleted
    """

    # delete scheduled runs, both auto- and user- created.
    await _delete_scheduled_runs(
        session=session, deployment_id=deployment_id, auto_scheduled_only=False
    )

    result = await session.execute(
        delete(db.Deployment).where(db.Deployment.id == deployment_id)
    )
    return result.rowcount > 0

read_deployment async

Reads a deployment by id.

Parameters:

Name Type Description Default
session sa.orm.Session

A database session

required
deployment_id UUID

a deployment id

required

Returns:

Type Description

db.Deployment: the deployment

Source code in prefect/server/models/deployments.py
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
@inject_db
async def read_deployment(
    session: sa.orm.Session, deployment_id: UUID, db: PrefectDBInterface
):
    """Reads a deployment by id.

    Args:
        session: A database session
        deployment_id: a deployment id

    Returns:
        db.Deployment: the deployment
    """

    return await session.get(db.Deployment, deployment_id)

read_deployment_by_name async

Reads a deployment by name.

Parameters:

Name Type Description Default
session sa.orm.Session

A database session

required
name str

a deployment name

required
flow_name str

the name of the flow the deployment belongs to

required

Returns:

Type Description

db.Deployment: the deployment

Source code in prefect/server/models/deployments.py
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
@inject_db
async def read_deployment_by_name(
    session: sa.orm.Session, name: str, flow_name: str, db: PrefectDBInterface
):
    """Reads a deployment by name.

    Args:
        session: A database session
        name: a deployment name
        flow_name: the name of the flow the deployment belongs to

    Returns:
        db.Deployment: the deployment
    """

    result = await session.execute(
        select(db.Deployment)
        .join(db.Flow, db.Deployment.flow_id == db.Flow.id)
        .where(
            sa.and_(
                db.Flow.name == flow_name,
                db.Deployment.name == name,
            )
        )
        .limit(1)
    )
    return result.scalar()

read_deployments async

Read deployments.

Parameters:

Name Type Description Default
session sa.orm.Session

A database session

required
offset int

Query offset

None
limit int

Query limit

None
flow_filter schemas.filters.FlowFilter

only select deployments whose flows match these criteria

None
flow_run_filter schemas.filters.FlowRunFilter

only select deployments whose flow runs match these criteria

None
task_run_filter schemas.filters.TaskRunFilter

only select deployments whose task runs match these criteria

None
deployment_filter schemas.filters.DeploymentFilter

only select deployment that match these filters

None
work_pool_filter schemas.filters.WorkPoolFilter

only select deployments whose work pools match these criteria

None
work_queue_filter schemas.filters.WorkQueueFilter

only select deployments whose work pool queues match these criteria

None
sort schemas.sorting.DeploymentSort

the sort criteria for selected deployments. Defaults to name ASC.

schemas.sorting.DeploymentSort.NAME_ASC

Returns:

Type Description

List[db.Deployment]: deployments

Source code in prefect/server/models/deployments.py
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
@inject_db
async def read_deployments(
    session: sa.orm.Session,
    db: PrefectDBInterface,
    offset: int = None,
    limit: int = None,
    flow_filter: schemas.filters.FlowFilter = None,
    flow_run_filter: schemas.filters.FlowRunFilter = None,
    task_run_filter: schemas.filters.TaskRunFilter = None,
    deployment_filter: schemas.filters.DeploymentFilter = None,
    work_pool_filter: schemas.filters.WorkPoolFilter = None,
    work_queue_filter: schemas.filters.WorkQueueFilter = None,
    sort: schemas.sorting.DeploymentSort = schemas.sorting.DeploymentSort.NAME_ASC,
):
    """
    Read deployments.

    Args:
        session: A database session
        offset: Query offset
        limit: Query limit
        flow_filter: only select deployments whose flows match these criteria
        flow_run_filter: only select deployments whose flow runs match these criteria
        task_run_filter: only select deployments whose task runs match these criteria
        deployment_filter: only select deployment that match these filters
        work_pool_filter: only select deployments whose work pools match these criteria
        work_queue_filter: only select deployments whose work pool queues match these criteria
        sort: the sort criteria for selected deployments. Defaults to `name` ASC.

    Returns:
        List[db.Deployment]: deployments
    """

    query = select(db.Deployment).order_by(sort.as_sql_sort(db=db))

    query = await _apply_deployment_filters(
        query=query,
        flow_filter=flow_filter,
        flow_run_filter=flow_run_filter,
        task_run_filter=task_run_filter,
        deployment_filter=deployment_filter,
        work_pool_filter=work_pool_filter,
        work_queue_filter=work_queue_filter,
        db=db,
    )

    if offset is not None:
        query = query.offset(offset)
    if limit is not None:
        query = query.limit(limit)

    result = await session.execute(query)
    return result.scalars().unique().all()

schedule_runs async

Schedule flow runs for a deployment

Parameters:

Name Type Description Default
session sa.orm.Session

a database session

required
deployment_id UUID

the id of the deployment to schedule

required
start_time datetime.datetime

the time from which to start scheduling runs

None
end_time datetime.datetime

runs will be scheduled until at most this time

None
min_time datetime.timedelta

runs will be scheduled until at least this far in the future

None
min_runs int

a minimum amount of runs to schedule

None
max_runs int

a maximum amount of runs to schedule

None

This function will generate the minimum number of runs that satisfy the min and max times, and the min and max counts. Specifically, the following order will be respected.

- Runs will be generated starting on or after the `start_time`
- No more than `max_runs` runs will be generated
- No runs will be generated after `end_time` is reached
- At least `min_runs` runs will be generated
- Runs will be generated until at least `start_time` + `min_time` is reached

Returns:

Type Description
List[UUID]

a list of flow run ids scheduled for the deployment

Source code in prefect/server/models/deployments.py
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
async def schedule_runs(
    session: sa.orm.Session,
    deployment_id: UUID,
    start_time: datetime.datetime = None,
    end_time: datetime.datetime = None,
    min_time: datetime.timedelta = None,
    min_runs: int = None,
    max_runs: int = None,
    auto_scheduled: bool = True,
) -> List[UUID]:
    """
    Schedule flow runs for a deployment

    Args:
        session: a database session
        deployment_id: the id of the deployment to schedule
        start_time: the time from which to start scheduling runs
        end_time: runs will be scheduled until at most this time
        min_time: runs will be scheduled until at least this far in the future
        min_runs: a minimum amount of runs to schedule
        max_runs: a maximum amount of runs to schedule

    This function will generate the minimum number of runs that satisfy the min
    and max times, and the min and max counts. Specifically, the following order
    will be respected.

        - Runs will be generated starting on or after the `start_time`
        - No more than `max_runs` runs will be generated
        - No runs will be generated after `end_time` is reached
        - At least `min_runs` runs will be generated
        - Runs will be generated until at least `start_time` + `min_time` is reached

    Returns:
        a list of flow run ids scheduled for the deployment
    """
    if min_runs is None:
        min_runs = PREFECT_API_SERVICES_SCHEDULER_MIN_RUNS.value()
    if max_runs is None:
        max_runs = PREFECT_API_SERVICES_SCHEDULER_MAX_RUNS.value()
    if start_time is None:
        start_time = pendulum.now("UTC")
    if end_time is None:
        end_time = start_time + (
            PREFECT_API_SERVICES_SCHEDULER_MAX_SCHEDULED_TIME.value()
        )
    if min_time is None:
        min_time = PREFECT_API_SERVICES_SCHEDULER_MIN_SCHEDULED_TIME.value()

    start_time = pendulum.instance(start_time)
    end_time = pendulum.instance(end_time)

    runs = await _generate_scheduled_flow_runs(
        session=session,
        deployment_id=deployment_id,
        start_time=start_time,
        end_time=end_time,
        min_time=min_time,
        min_runs=min_runs,
        max_runs=max_runs,
        auto_scheduled=auto_scheduled,
    )
    return await _insert_scheduled_flow_runs(session=session, runs=runs)

update_deployment async

Updates a deployment.

Parameters:

Name Type Description Default
session sa.orm.Session

a database session

required
deployment_id UUID

the ID of the deployment to modify

required
deployment schemas.actions.DeploymentUpdate

changes to a deployment model

required

Returns:

Name Type Description
bool bool

whether the deployment was updated

Source code in prefect/server/models/deployments.py
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
@inject_db
async def update_deployment(
    session: sa.orm.Session,
    deployment_id: UUID,
    deployment: schemas.actions.DeploymentUpdate,
    db: PrefectDBInterface,
) -> bool:
    """Updates a deployment.

    Args:
        session: a database session
        deployment_id: the ID of the deployment to modify
        deployment: changes to a deployment model

    Returns:
        bool: whether the deployment was updated

    """

    # exclude_unset=True allows us to only update values provided by
    # the user, ignoring any defaults on the model
    update_data = deployment.dict(
        shallow=True,
        exclude_unset=True,
        exclude={"work_pool_name"},
    )
    if deployment.work_pool_name and deployment.work_queue_name:
        # If a specific pool name/queue name combination was provided, get the
        # ID for that work pool queue.
        update_data[
            "work_queue_id"
        ] = await WorkerLookups()._get_work_queue_id_from_name(
            session=session,
            work_pool_name=deployment.work_pool_name,
            work_queue_name=deployment.work_queue_name,
            create_queue_if_not_found=True,
        )
    elif deployment.work_pool_name:
        # If just a pool name was provided, get the ID for its default
        # work pool queue.
        update_data[
            "work_queue_id"
        ] = await WorkerLookups()._get_default_work_queue_id_from_work_pool_name(
            session=session,
            work_pool_name=deployment.work_pool_name,
        )
    elif deployment.work_queue_name:
        # If just a queue name was provided, ensure the queue exists and
        # get its ID.
        work_queue = await models.work_queues._ensure_work_queue_exists(
            session=session, name=update_data["work_queue_name"], db=db
        )
        update_data["work_queue_id"] = work_queue.id

    update_stmt = (
        sa.update(db.Deployment)
        .where(db.Deployment.id == deployment_id)
        .values(**update_data)
    )
    result = await session.execute(update_stmt)

    # delete any auto scheduled runs that would have reflected the old deployment config
    await _delete_scheduled_runs(
        session=session, deployment_id=deployment_id, db=db, auto_scheduled_only=True
    )

    # create work queue if it doesn't exist
    if update_data.get("work_queue_name"):
        await models.work_queues._ensure_work_queue_exists(
            session=session, name=update_data["work_queue_name"], db=db
        )

    return result.rowcount > 0